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The extensive molecular dynamics data that are available for a liquid aluminium model 
are used to investigate single particle dynamics. The introduction of structural rearrange- 
ments into a theory of the velocity autocorrelation function is carefully examined, and its 
influence on the self-diffusion coefficient investigated. It is pointed out that structural 
relaxation becomes particularly significant in supercooled states of the liquid, and 
provides a dynamical feedback effect that could be a mechanism for the glass transition. 

Key words: single particle dynamics, structural relaxation, liquid aluminium model, 
structural rearrangements. 

1 INTRODUCTION 

The extensive molecular dynamics data available from a liquid alumin- 
ium model'.' is used to try to establish the effects of structural 
relaxation in a theory of the diffusion process in simple liquids. A recent 
analysis3 of these data is briefly reviewed, but the emphasis here is on 
single particle dynamics via the velocity autocorrelation function t,$(t). 
'We attempt to elucidate the effects on $(t), and hence the diffusion 
coefficient, of structural rearrangements in the relaxation of fluctuating 
shear stresses. Within our theory these produce a slowly decaying 
component in the velocity autocorrelation function. The magnitude is 
too small to have a noticeable impact on the appearance of the latter, 
but its influence on the low frequency behaviour of the frequency 
spectrum, particularly the predicted self-diffusion coefficient, is empha- 
sised. 
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12 T. GASKELL 

Now structural relaxation itself is clearly controlled by atomic 
diffusion, and in principle our approach leads to a closed equation for 
the diffusion coefficient including this dynamical feedback effect. The 
framework for our analysis should be applicable to all simple liquids, 
even when strongly supercooled. In the latter case structural relaxation 
becomes more and more important in controlling the diffusion process. 
It is pointed out that our theory may have some relevance to a better 
understanding of the frustration of the diffusion mechanism in strongly 
supercooled states, and perhaps the onset of the glass transition. 

2 THEORETICAL FRAMEWORK 

The expression we use to interpret the velocity autocorrelation function 
data is derived by introducing a microscopic velocity field4. The result 
will be quoted here, but we emphasise the following points. Firstly, by 
means of the velocity field we introduce momentum transfer between a 
chosen atom and its neighbours and can impose momentum conserva- 
tion in the theory. Secondly, the essential step in the derivation relies on 
the assumption that the time scale for momentum transfer is very much 
shorter than for atomic diffusion. This is clearly justified in a dense 
liquid. Eventually we obtain 

which allows us to define the components t,bL(t) and $-,.(t) such that 
$(t)  = $L(t)  + $T(t) .  C,(q, t )  and C,(4, t )  are the longitudinal and 
transverse momentum current correlation functions, F,(q, t )  is the 
self-intermediate scattering function andf(q) the Fourier transform of 
(essentially) a step function introduced through the velocity field. 

An analysis was made3 of molecular dynamics data obtained for a 
liquid aluminium model. The average temperature of the system is 
T = 984 K and the number density p = 0.05276 x loz4 ~ m - ~ .  Details 
of the pair potential are given in Ref. 1, where it was shown to give a 
good description of phonon dispersion curves in soIid aluminium. It is 
known from the data that collective density excitations are supported 
for wavelengths down to about twice the interparticle separation (r,,). If 
Eq. (1) is to be usefully applied it is important that the expression we 
use for C,(q, t )  should be accurate enough to reflect both this behaviour 
and the appropriate dispersion of the collective modes. This is because 
$(t) is determined by a superposition of two components and the phase 
of the oscillations in t,hL(t) are particularly significant. The familiar 
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Figure 1 Open circles show dispersion curves, obtained from computer simulation data 
of the dynamic structure factor, for liquid rubidium and liquid aluminium. The dashed 
line is the hydrodynamic form w = c,q, where c, is the velocity of sound in the liquid. 
The full curve is w,(q). 

viscoelastic model' does not come into this category. This may be 
connected with the form of dispersion relation derived from the 
molecular dynamics study. In Figure 1 we illustrate the dispersion 
relation, w(q), for Rb (where the viscoelastic model works quite well) 
and for Al, both obtained from S ( q , o )  data. Also shown are the 
respective frequencies, w,(q), defined through the second and fourth 
moments of S(q,o)  by 0: = ;;"/;sz, where as usual S(q,w) is the 
dynamic structure factor. 

The viscoelastic model predicts for the longitudinal current an 
expression of the form 

C,(q, t )  = A(q)e-"(@' + B(q)e-b(q)' cos(wo(q)t) 
+ C(q)e-b(q)' sin(o,(q)t) 

The frequency of the excitations, o,(q), is normally determined from the 
solution of a cubic equation, whose coefficients are expressed in terms 
of and 2. In an attempt to adapt this model for A1 (following the 
lead given by Ebbsjo et al.'s' numerical fit of the intermediate scattering 
function data) we select w,(q) as w,(q). This can be seen to be not 
unreasonable from the details in Figure 1. Information about the choice 

(2) 
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Figure 2 Longitudinal current spectra, w2S(q, (O)(S-’), for a range of wavevectors in Al. 
The full curves show modified viscoelastic model’ results, the broken curves are 
obtained from the usual viscoelastic model’ and the open circles represent computer 
data’. 

of relaxation times, and some limitations of this procedure are con- 
tained in Ref. 3. Figure 2 compares computer data of w2S(q, w) = 
(q2/rnz)C,(q, w) with model predictions for a range of wavenumbers. 
The model gives a respectable description of the location of peak 
frequencies, whereas in the unmodified viscoelastic scheme the peak 
frequencies are consistently low. 

We discuss the transverse current in terms of its Laplace transform 

G ( 4 , S )  = lorn d t  exp(-st)C,(q, t )  

and write, formally 
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STRUCTURAL RELAXATION IN LIQUIDS 15 

where q(q, s) is the memory function or generalized viscosity. In the 
viscoelastic approximation the time-dependence of q(q, t )  is described 
by a single exponential. However, it can be shown that 

(4) rl(q = 0, t )  = (dk, w ~ x y ( o ) ~ x y ( t ) )  

with a,,(t) an off-diagonal element of the microscopic stress tensor6. 
Computer studies in dense liquid models show that the decay of the 
stress autocorrelation function in Eq. (4) is described by two quite 
different relaxation times. Mode coupling theory suggests that the 
slowly decaying component may be accounted for in terms of the 
relaxation of density fluctuations, which in turn involves structural 
rearrangements. One would expect, at least at small q, that the memory 
function will also contain two components. Consequently we modify 
the viscoelastic scheme to try to incorporate these processes in a 
phenomenological manner by writing 

q(q, t )  = G(q)[(l - a(q))e-f/7s(q) + a(q)e-'/7'(q'] ( 5 )  

G(q) is the rigidity and tl 9 t,. The first term is used, at small t, to 
describe the rapid decay of the correlation function due to binary 
collisions. Such a scheme was used by Levesque et a/.' to fit computer 
simulation data of C,(q, t )  for liquid argon. 

There is no transverse current data for Al, and our selection of the 
parameters in Eq. ( 5 )  uses the following ideas: 

i) t,(q = 0) and rl(q = 0) are fixed in units of the Enskog mean 
collision time by appealing respectively to Enskog theory in a rigid 
sphere fluid, and computer simulation studies in a Lennard-Jones (and 
rigid sphere) fluid3. By representing the liquid metal as a hard sphere 
system of approximately the same packing fraction their values are 
transferred to the metal. The relaxation time tXq)  is taken to be 
independent of q', whilst the assumed form of ts (q )  is a familiar one 
from the viscoelastic approximation8. We find that tl N 15ts(q = 0), 
which is not inconsistent with the numerical fit by Levesque et al. 

ii) a(q = 0) is then fixed by the hydrodynamic requirement 

(1 - a(O))~s(O) + 4 O ) t l  = q/G(q = 0) ( 6 )  

where q is the shear viscosity coefficient. Since the presence of a(q) is to 
take account of structural rearrangements, we expect it to decay rapidly 
for q 2 2rc/2r0 and it was assumed3 that a(q) = ~(0) exp( -(q/q,)2) 
where qc = n/ro. 
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16 T. GASKELL 

3 RESULTS AND DISCUSSION 

The details of the velocity autocorrelation function, obtained from Eq. 
(!), are shown in Figure 3 together with the frequency spectrum 
$(a) E @ d t  cos(ot)$(t). It can be seen that $,(o) is responsible for the 
“shoulder” on the high-frequency side of the principle peak in the 
frequency spectrum. The work of Hahn and Matzke2 has made it 
possible to compare the two components $L(t) and $T( t )  with their 
molecular dynamic counterparts. The improvement in the longitudinal 
component, when compared to that obtained with the usual viscoelastic 
model for C,(q, t), is significant. It is also apparent that the transverse 
component is in overall better accord with the computer data when the 

w ( 1o’LsT 

Figure 3 The full, dotted and broken curves in the upper figure represent +(t), $r(t) and 
IJT(t)  respectively, as defined through Eq. (I), for Al. The corresponding frequency 
spectra are_ shown below. The open circles represent computer data of $(t)’ and its 
spectrum IJ(o)(s). 
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STRUCTURAL RELAXATION IN LIQUIDS 17 

two exponential model is used for the memory function of the trans- 
verse current3. 

However, we wish to concentrate here on other aspects of the effect of 
the slowly decaying component in the memory function. The stucture 
on the low frequency side of the peak in the spectrum in Figure 3 is 
produced by a weak but extensive negative tail in +T(t) ,  which itself 
arises from the slow decay of v](q, t). Computer data of +(t )  by Ebbsjo 
et al. (Studsvik Research Laboratory Report NFL-4, 1978) does show 
evidence of a long-ranged negative tail, but the magnitude is smaller 
than in our theory. Some of these data are plotted in Figure 3 (although 
the tail, beyond 2 x s, is too small to be seen), along with the 
frequency spectrum we have calculated from these data. Probably the 
most important effect of the long-ranged component is on the self- 
diffusion coefficient D. In our theory D is determined by the coupling of 
a particles motion to the transverse current. Using Eq. (1) and Eq. (3) it 
follows that in a dense liquidg (where we can, to an excellent approxi- 
mation, put F,(q, t )  = 1 in Eq. (1)) 

D = (k,T/m) j O r n d t W )  = (PkBT/3.rr2) jrn dqf(q) /v](q)  (7) 

where v](q) = ij(q, s = 0) and ij(q = 0) = v ] .  According to the model used 
here the wavevector-dependent viscosity is given by 

(8) 
The inclusion of t i  reduces the predicted diffusion coefficient by about 
20 %. In Figure 4 we give details of q(q) = q(q)/v]. The influence of the 
term a(q)z,(q) is to tend to flatten the curve at small q. For comparison, 
computer data obtained recently for a rigid sphere fluid" and a 
Lennard-Jones liquid' at approximately the same packing fraction are 
included. The data and the theoretical curve show a rapid decrease of 
V(q) for qa < 10. Although not shown here, this is followed by a slower 
I/q decay typical of free particle behaviour for qa > 25. However, both 
sets of data show the appearance of a sort of 'shoulder' at qa - 4. We 
expect it to be present in Al, but our simple model cannot produce the 
effect. 

We conclude with some comments which attempt to clarify the role 
of the relaxation time, tI,  in controlling the diffusion process as the 
liquid is supercooled. They should be applicable to all simple liquids. 
The structural relaxation time itself could be interpreted through the 
leakage of particles from the nearest neighbour shell of a given reference 
atom. We could conveniently take it to be the time required for 50 % of 
the nearest neighbours to be exchanged. A relaxation time, so defined, 

0 

v(4)  = G(dC(1 - @ ( q ) ) T s ( q )  + @m,(q)l 
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Figure 4 Generalized wavevector-dependent shear viscosity ij(q) = q(q)/q. The open 
circles show simulation data for a rigid sphere fluid”, the dots are data from a 
Lennard-Jones system” and the full curve is the theoretical prediction for A1 from Eq. 
(8). 

has been investigated recently in a molecular dynamics study of 
supercooled states of a liquid Rb model”. The movements of about 12 
nearest neighbours of a tagged particle, initially within a sphere of 
appropriately chosen radius, are “observed in the computer experi- 
ment. After the requisite averaging over tagged particles and time 
origins the number of original atoms within the sphere is calculated as a 
function of time. As the system was supercooled from the melting point 
(318.5 K) to 234.4 K the structural relaxation time was found to 
increase from 12 ps to 30 ps. The self-diffusion coefficient decreased 
from 2.21 x cm2 s - ’  to 0.83 x cm2 s-’. Since structural 
relaxation depends on diffusive motion, we suggest that the stuctural 
relaxation time N A(ro/2)2/D, (r0/2) being the atomic sphere radius, 
and A is a parameter whose value we would anticipate to be of order 
unity. This expression gives a very reasonable estimate of the relaxation 
times obtained by Kinell and Lovesey”, when A % 0.33. 

Consequently we anticipate that 7) - ar&’D, where a is a numerical 
factor which could be estimated from computer simulation data of the 
transverse current. With this expression for T) we have 
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STRUCTURAL RELAXATION IN LIQUIDS 19 

or 

DC1 - (pk,T/3a2) jom dqf(q)/{G(q)C(1 - 4 q ) ) D m  + 4q)ar;l)l = 0 

(9) 

If the explicit dependence of Ti on D-'  can be made more precise, the 
above equation may give valuable information about the temperature 
dependence of the self-diffusion coefficient in the supercooled region of 
the phase diagram. Because of the introduction of a dynamical feedback 
mechanism into the theory it is also possible that in some regions D = 0 
is the only solution of Eq. (9), perhaps signalling the onset of the glass 
transition. Similar ideas have been discussed by Gesztii3 (see also 
Sjolander and Turski14) although in terms of a viscosity feedback 
mechanism. In this case it was suggested that the feedback mechanism 
leads to an instability, namely --., co, at some temperature. It also 
follows from our work that if D +O,  Ti -+ a and hence that r]  = 

d q ( q  = 0, t )  -+ CO. The merit of the present derivation is that it is 
contained within a microscopic framework which can accurately de- 
scribe the details of atomic dynamics displayed in computer simulation 
data, as we have demonstrated above. 
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